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Abstract

For crystal resonators, it is always desirable to calculate the electric properties accurately for application
purposes. Such calculations have been done with analytical solutions from approximate equations and simpli®ed

models with good results, but for better consideration of the actual resonators, ®nite element method has been used
for the free vibration analysis with excellent results to aid the analysis and design. The ®nite element analysis based
on the higher order Mindlin plate theory is particularly e�ective and easy to implement and expand. As an

extension of the Mindlin plate theory based ®nite element analysis of crystal resonators, a new theory for the
electroded plates is derived and the piezoelectrically forced vibrations are formulated and implemented in this paper
in a manner similar to our previous work. The e�ect of the electrodes and the electric boundary conditions are
taken into consideration through the modi®cation of the higher order plate equations by changing the expansion

function of the electric potential for this particular problem. Through the conventional discretization of the new
plate theory, the linear equations for the piezoelectric plate under thickness excitation are constructed and solved
with e�cient numerical computation techniques such as the sparse matrix handling. The solutions of mechanical

displacement and electric potential are then used for the computation of the capacitance ratio of the electroded plate
with emphasis on its derivation with the two-dimensional plate theory. The applications of these results in crystal
resonator modeling are discussed and demonstrated in detail. Numerical examples showing good predictions of the

resonance frequency and capacitance ratio of electroded crystal plates of AT-cut quartz are presented with
experimental data. Published by Elsevier Science Ltd.

Keywords: Plate; Mindlin; Crystal; Piezoelectric; Resonator; Vibration; Capacitance; Finite; Element; Electrode

International Journal of Solids and Structures 37 (2000) 5653±5673

0020-7683/00/$ - see front matter Published by Elsevier Science Ltd.

PII: S0020-7683(99 )00241-3

www.elsevier.com/locate/ijsolstr

* Corresponding author. Tel.: +1-650-843-8336; fax: +1-650-843-9106.

E-mail addresses: jiwang@erd.epson.com (J. Wang), jdyu@erd.epson.com (J. Yu), yong@jove.rutgers.edu (Y.-K. Yong), imai.t-

sutomu@exc.epson.co.jp (T. Imai).



1. Introduction

Two-dimensional plate theories have been speci®cally developed for and widely used in the study of
vibrations of piezoelectric plates and crystal resonators. The extensive theoretical development has been
covering many aspects on the analytical solutions including the resonance frequency, mechanical e�ects
of electrodes, thermal e�ects, and piezoelectrically excited vibrations, to name a few. The solutions from
these two-dimensional approximate theories, through proper combination and interpretation, can be
used to calculate the basic properties, or the parameters, of crystal resonators. Furthermore, many
physical phenomena associated with vibrations of crystal resonators, such as the coupling of modes and
the frequency discontinuity (activity dip) due to thermal e�ect, can also be explored with these solutions
and considerations of other complication factors. This demonstrates the e�ectiveness and importance of
the plate theory based vibration analysis in the practical modeling of crystal resonators.

Because of the complexity of plate vibrations, which includes the multiple variables, complicated
boundary conditions, and complications of a plate with the presence of electrodes and mountings,
analytical solutions cannot be obtained for the two-dimensional problems even for equations in the
lowest order. For simplicity, but also adequately accurate for applications such as characterization, the
equations have been truncated to retain only the essential variables and correction factors which have
been introduced for the straight-crested wave solutions that neglect the e�ect of one spatial coordinate
for some special cases. Indeed, these solutions have been proven to be accurate and e�cient in certain
applications, particularly if the resonance frequency, frequency±temperature relations, and capacitances
are concerned for plates with simple geometry. With a small number of equations of dominant modes
and a�ordable computational costs, these solutions can be used to capture the essential characteristics of
the resonators to aid the development e�orts in conjunction with necessary experimental work. A
precise and rigorous solution requires the adoption of the ®nite element method, which can be especially
challenging due to the extremely high vibration frequency. The advantage of such an analysis, on the
other hand, is quite obvious, if the accurate solutions of the vibrations are taken into account. However,
it should be pointed out that even the ®nite element analysis, in most cases, are based on the
approximate two-dimensional equations, which inevitably have been compensated with correction
factors for the truncations. In addition, some complications such as the consideration of electrodes as
mass loading, is also treated with approximation. These facts remind us that certain approximations in
the implementation of the two-dimensional theory are feasible and accurate, thus making the results
practical and useful in most applications.

For the piezoelectrically excited vibrations of a crystal resonator, further consideration on the electric
boundary condition which requires that the electric potential on the electrodes must be equal has to be
satis®ed. This can be di�cult to accommodate because in plate theories like Mindlin (1955, 1972) or Lee
et al. (1987), the potential has been expanded into either power series or trigonometric series involving
higher order terms. Given the fact that the electric e�ect will a�ect the equations of charge through the
electric displacement on the surface, a relation between the electric potential components and the electric
displacement on the faces of the plate has to be established. One of the solutions is to expand the
electric displacement rather than the potential, as demonstrated by Tiersten and Mindlin (1962) and
Tiersten (1969), so the electric potential on the faces can be incorporated into the electric displacement.
Also, the e�ect of the potential on the face tractions due to piezoelectricity may need to be considered.
For the lower order theory such as the ®rst-order, the relation can be relatively simple because the
constant or linear expansion (in thickness coordinate) of potential will be able to provide necessary
equations for the solution as demonstrated by Tiersten (1969), Mindlin (1972) and Lee et al. (1987). If
the higher order theory involving the potential terms is required, we have found that such a relation is
hard to construct without creating further doubts on the applicability of the theory itself. This problem
has been noticed and investigated by Tiersten (1993) and Lee and Yu (1998) by using special expansion
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schemes which can satisfy the constant potential condition on the electrodes without requiring any
approximate relationship between the potential and the electric displacement. In fact, all these similar
expansion schemes have speci®ed, not surprisingly, that the higher order electric potentials (from the
second and up) will disappear on the electrodes. This is certainly the best approach to handle the
driving voltage on the electrodes, because there is no approximation procedure involved in order to
preserve the constant potential on the faces.

However, we found that these expansions have disregarded the original scheme employed by Mindlin
(1972), in which the electric potential is in power series of the thickness coordinate, thus e�ectively
making the new theory completely irrelevant to the Mindlin plate theory for plates without electrodes.
In practical applications, the plates are usually partially electroded for energy trapping and other
purposes. The analysis of such partially electroded plates require that the equations in the two regions,
unelectroded and electroded, should be compatible so the proper continuity conditions can be enforced
in both one- and two-dimensional problems. For this consideration, we start the new theory by closely
following Mindlin. In fact, the adoption of the new expansion does not change the de®nitions of the
higher order potentials at all. The expansion of the potential is modi®ed based on the known
requirement on the electrodes, but the original de®nition of the higher order components of both
mechanical and electric potential are preserved through this process. As a standard procedure, the two-
dimensional equations are deduced from the three-dimensional variational equations of motion and
charge. The two-dimensional stress, electric ®eld, and electric displacement tensors are modi®ed and
rede®ned based on the expansion scheme. Finally, a complete two-dimensional theory for electroded
piezoelectric plates, suitable for the high frequency vibrations of crystal resonators under thickness
excitation, are established. Furthermore, as we emphasized earlier, this equation is compatible with the
Mindlin plate theory so it would be more suitable for partially electroded plates.

It should be pointed out that we do not precede to the truncation, simpli®cation, and the one-
dimensional solutions of the equations after its completion. Instead, we implemented the theory in the
®nite element analysis procedure as part of our e�ort in the modeling of crystal resonators, as
demonstrated in our previous paper (Wang et al., 1999), to establish the framework of the
implementation of the higher order plate theory and the generalized formulation for the piezoelectric
plates. We presented our results based on the ®nite element computation for comparison with known
experimental data. As we concluded in our earlier study, the consideration of the electrodes electrically
do not change the frequency characteristics much, again showing that the piezoelectric e�ects in such
analysis are negligible. This also reminds us that we may be able to use the solutions from the
mechanical vibrations for the accurate predictions of the electric properties as well. We also derived the
equation for the capacitance ratio from the new equations and implemented it in the ®nite element
analysis. The adoption of the third-order plate theory is based on an earlier study (Yong et al., 1996b)
on the accuracy of di�erent plate theories (Mindlin and Lee) in the prediction of the resonance
frequency, as we have discussed earlier (Yong et al., 1996a; Wang et al., 1999). The results presented in
this paper, as we expected, are in close agreement with the experimental data.

2. 2D equations with the consideration of electrodes

It has been widely known that in the derivation of the two-dimensional higher order Mindlin plate
theory for piezoelectric plates, the mechanical displacements and electric potential are expanded into
power series of the thickness coordinate as

uj �
X1
n�0

xn
2u
�n�
j , f �

X1
n�0

xn
2f
�n�, �1�
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where u
�n�
j and f�n� are the nth-order displacement and electric potential, respectively. The coordinate

system of the plate, which is considered fully electroded here, is shown in Fig. 1. The Mindlin plate
theory, particularly with its extension to higher order variables, has wide applications in the high
frequency vibrations of piezoelectric plates for crystal resonator analysis. Truncated equations with
selected vibration modes, typically thickness-shear and ¯exure, from Mindlin plate theory based on (1)
have been applied to forced vibrations of crystal plate resonators by Mindlin (1984) and Sekimoto et al.
(1992) and from Lee plate theory (Lee et al., 1987) by Lee and Wang (1996), Wang and Momosaki
(1997), ®nally by Lee and Lin (1998). However, it should be noted that an approximation has been
made in the consideration of the driving voltage on the electrodes. While the approximating procedure,
as shown by Lee et al. (1987), is relatively simple for the ®rst-order equations, an extension to include
higher order terms is di�cult to obtain.

2.1. The electric potential expansion

For piezoelectric plates with electroded faces, it is essential to consider the additional requirement that
the electric potential on the faces should be constant. With the potential expansion given in (1)2, such a
condition can only be satis®ed with

f�b� �
X1
n�0

bnf�n�,

f� ÿ b� �
X1
n�0
� ÿ b�nf�n�, �2�

where f�b� and f�ÿb� are the driving voltages on the upper and lower faces �x2 �2b). Because the
even and odd terms in (2) can be cancelled through summation and subtraction, a relation showing that
the higher order potentials are not totally independent among the potential terms can be established.
The dependence of the potentials will provide further opportunity for the modi®cation of the potential
expansion and thus the equations. To start, we obtain f�0� and f�1� from (2) as

Fig. 1. A quartz crystal plate.

Ji Wang et al. / International Journal of Solids and Structures 37 (2000) 5653±56735656



f�0� � f0 ÿ
X1
n�0

b2�n�1�f�2n�2�,

f�1� � f1

b
ÿ
X1
n�0

b2�n�1�f�2n�3�,

f0 �
1

2

�
f�b� � f� ÿ b��, f1 �

1

2

�
f�b� ÿ f� ÿ b��: �3�

This shows that at least the zeroth- and ®rst-order potentials, f�0� and f�1�, can be expressed in terms of
higher order potentials and the voltage on faces.

Through the substitution of (3) back to (1)2, we have the new electric potential expansion upon
satisfying the equal potential conditions on the faces as

f � f0 �
x2

b
f1 �

X1
n�0

�
x 2�n�1�
2 ÿ b2�n�1�

�ÿ
f�2n�2� � x2f

�2n�3��, �4�

for electroded plates. For a closer look, the ®rst few terms up to the third-order power series are

f � f0 �
x2

b
f1 �

ÿ
x 2
2 ÿ b2

�
f�2� � x2

ÿ
x 2
2 ÿ b2

�
f�3�: �5�

It is clearly shown that the face conditions are fully accommodated through the precise representation of
the voltage on the electrodes. The replacement of the power series by a polynomial which vanishes on
both faces ensures that only the constant terms, which are determined by the driving voltage, will
determine the potential distribution. The e�ect of the higher order terms are limited to the potential
distribution in the interior of the crystal plate. As a result, it is easy to understand that the relationship
between the electric displacement and the potential is no longer needed. This, as we stated before, is the
result we are actually looking for.

Although the expansion scheme we devise and present here is through a systematic derivation,
concepts like this have been pioneered by other authors earlier. In the consideration of the vibrations of
piezoelectric plates in large electric ®elds, Tiersten (1993) has essentially employed the same expansion
and derived the equations up to the third-order displacement and potential. In the study of a
piezoelectric plate with graded material properties across the thickness, Lee and Yu (1998) used the
same expansion with slightly di�erent notations. In essence, the same polynomial, x 2

2 ÿ b2, is present in
all the expansions to take care of the face conditions of the electric potential, while the potential terms
are di�erent with a constant scaling factor. Tiersten's equations are expanded to include cubic electrical
nonlinearity by Yang (1999). In this paper, the same notations and procedure employed by Mindlin
(1955) are inherited so the resulting equations can be used, as we also intended, for plates with partial
electrodes and ®nite element implementation. However, for expansion of the potential higher than the
third-order, the polynomials we employed here will be completely di�erent from others, and a
straightforward scaling of the potential terms will be impossible.

2.2. Two-dimensional equations

Through the examination of the expansion in (5), we can observe that only the constant terms are
kept in the ®rst-order equations. For the third-order expansion, we have
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df � ÿx 2
2 ÿ b2

�
df�2� � x2

ÿ
x 2
2 ÿ b2

�
df�3�,

Ek �
ÿ
x 2
2 ÿ b2

�
E
�2�
k � x2

ÿ
x 2
2 ÿ b2

�
E
�3�
k ,

E2 � ÿf1

b
� 2x2E

�2�
2 �

ÿ
3x 2

2 ÿ b2
�
E
�3�
2 : �6�

Apparently, we have de®ned the higher order electric ®elds related to the potential components in the
above equation as

E
�n�
k � ÿf�n�, k , E

�n�
2 � ÿf�n�, n � 2, 3; k � 1, 3: �7�

Since the mechanical displacements will remain unchanged, it should be kept in mind that the
mechanical equations of motion should remain the same. However, the electric potentials in the stress
terms should take new forms due to the changes in the electric ®eld. For the derivation of the new two-
dimensional constitutive equations, we write out the following three-dimensional ones for later use

Tp � cpq
X1
m�0

xm
2 S
�m�
q � ekp

hÿ
x 2
2 ÿ b2

�
f�2�, k � x2

ÿ
x 2
2 ÿ b2

�
f�3�, k

i
� e2p

�
f1

b
� 2x2f

�2� � ÿ3x 2
2 ÿ b2

�
f�3�

�
,

Di � eiq
X1
m�0

xm
2 S
�m�
q ÿ Eik

hÿ
x 2
2 ÿ b2

�
f�2�, k � x2

ÿ
x 2
2 ÿ b2

�
f�3�, k

i
ÿ Ei2

�
f1

b
� 2x2f

�2� � ÿ3x 2
2 ÿ b2

�
f�3�

�
,

p, q � 1, 2, 3, 4, 5, 6; i � 1, 2, 3; k � 1, 3, �8�

where Tp, Di, S �n�p , cpq, ekp, and Eij are stress, electric displacement vector, nth-order strain, elastic
constant tensor, piezoelectric constant tensor, and dielectric constant tensor, respectively, without
further elaboration. The nth-order strain tensor based on the power series expansion of mechanical
displacements in (1)1 is de®ned (Wang et al., 1999) as

S
�n�
ij �

1

2

h
u
�n�
i, j � u

�n�
j, i � �n� 1�

�
di2u

�n�1�
j � dj2u

�n�1�
i

�i
: �9�

By taking the standard procedure for the derivation of the two-dimensional plate theory from the three-
dimensional equations of motion (Mindlin, 1972, 1984), in the third-order case, we have the two-
dimensional constitutive equations

T �n�p �
�b
ÿb

Tpx
2
2 dx2 �

�b
ÿb

(
cpq
X1
m�0

xm
2 S
�m�
q � ekp

hÿ
x 2
2 ÿ b2

�
f�2�, k � x2

ÿ
x 2
2 ÿ b2

�
f�3�, k

i
� e2p

�
f1

b
� 2x2f

�2� � ÿ3x 2
2 ÿ b2

�
f�3�

�)
xn
2 dx2

� cpq
X1
m�0

BmnS
�m�
q ÿ 2B1ne2pE

�2�
2 ÿ

ÿ
B2n ÿ B0nb

2
�
ekpE

�2�
k ÿ

ÿ
B3n ÿ B1nb

2
�
ekpE

�3�
k

ÿ
ÿ
3B2n ÿ B0nb

2
�
e2pE

�3�
2 � e2p

f1

b
B0n, �10�

where the integral constant is
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Bmn �

8><>:
2bm�n�1

m� n� 1
, m� n � even,

0, m� n � odd:

�11�

For the third-order theory, the two-dimensional constitutive relations are

T �0�p � cpq

�
2bS �0�q �

2b3

3
S �2�q

�
� 4b3

3
ekpE

�2�
k � 2e2pf1,

T �1�p � cpq

�
2b3

3
S �1�q �

2b5

5
S �3�q

�
ÿ 4b3

3
e2pE

�2�
2 �

4b5

15
ekpE

�3�
k ,

T �2�p � cpq

�
2b3

3
S �0�q �

2b5

5
S �2�q

�
� 4b5

15
ekpE

�2�
k ÿ

8b5

15
e2pE

�3�
2 �

2b2

3
e2pf1,

T �3�p � cpq

�
2b5

5
S �1�q �

2b7

7
S �3�q

�
ÿ 4b5

5
e2pE

�2�
2 �

4b7

35
ekpE

�3�
k : �12�

It should be noted that the prescribed driving voltage f1 appears in these equations.
Through proper arrangement and combination, the previous equations can be expressed in tensor

notations as

T�n� � BmncS�m� ÿ e�2�n E�2� ÿ e�3�n E�3� ÿ e�n�f1, n � 0, 1, 2, 3: �13�

The de®nitions of the two-dimensional stress, strain, electric ®eld vector, and the material constant
matrices, will be given and explained in a later section.

For the two-dimensional charge equations, we need to start from the variational equation of charge
to consider the changes in the potential expansion. The three-dimensional charge equation for a ®nite
volume is�

V

Di, idf dV � 0: �14�

By using the potential variation in (6)1, this equation can be written as�
A

�b
ÿb

Di, i

hÿ
x 2
2 ÿ b2

�
df�2� � x2

ÿ
x 2
2 ÿ b2

�
df�3�

i
dx2 dA � 0: �15�

For the arbitrary variation of df�2� and df�3�, we must have�
A

�b
ÿb

Di, i

ÿ
x 2
2 ÿ b2

�
df�2� dx2 dA � 0,

�
A

�b
ÿb

Di, ix2

ÿ
x 2
2 ÿ b2

�
df�3� dx2 dA � 0, �16�

or
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�
A

�
D
�2�
i, i ÿ �D

�2�
2

�
df�2� dA � 0,

�
A

�
D
�3�
i, i ÿ �D

�3�
2

�
df�3� dA � 0, �17�

where the two-dimensional electric displacement components in (17) are de®ned, with the use of (8)2, as

D
�2�
i �

�b
ÿb

Di

ÿ
x 2
2 ÿ b2

�
dx2 � ÿeip

X1
m�0, 2, 4,...

4bm�3

�m� 3��m� 1�S
�m�
p ÿ

16b5

15
Ekif

�2�
, k ÿ

8b5

15
E2if

�3� � 4b2

3
E2if1,

�D
�2�
2 �

�b
ÿb

2x2D2 dx2 � 2e2p
X1
m�0

B1mS
�m�
p ÿ

8b3

3
E22f

�2� � 8b5

15
Ek2f

�3�
, k ,

D
�3�
i �

�b
ÿb

Dix2

ÿ
x 2
2 ÿ b2

�
dx2 � ÿeip

X1
m�1, 3, 5,...

4bm�4

�m� 4��m� 2�S
�m�
p �

8b5

15
E2if

�2� ÿ 16b7

105
Ekif

�3�
, k ,

�D
�3�
2 �

�b
ÿb

D2

ÿ
3x 2

2 ÿ b2
�

dx2 � e2p
X1

m�0, 2, 4,...

4mbm�3

�m� 3��m� 1�S
�m�
p ÿ

8b5

15
Ek2f

�2�
, k ÿ

8b5

5
E22f

�3�: �18�

The electric displacements in terms of strain and electric ®eld vectors for the third-order theory are

D
�2�
i � ÿeip

�
4b3

3
S �0�p �

4b5

15
S �2�p

�
� 16b5

15
EkiE

�2�
k �

8b5

15
E2iE

�3�
2 �

4b2

3
E2if1,

�D
�2�
2 � e2p

�
4b3

3
S �1�p �

4b5

5
S �3�p

�
� 8b3

3
E22E

�2�
2 ÿ

8b5

15
Ek2E

�3�
k ,

D
�3�
i � ÿeip

�
4b5

15
S �1�p �

4b7

35
S �3�p

�
ÿ 8b5

15
E2iE

�2�
2 �

16b7

105
EkiE

�3�
k ,

�D
�3�
2 � e2p

8b5

15
S �2�p �

8b5

15
Ek2E

�2�
k �

8b5

5
E22E

�3�
2 : �19�

Again, these equations can be expressed in tensor notations as

D
�k� � e

�m�
k S�m� � E�2�k E�2� � E�3�k E�3� � E�k�f1, k � 2, 3: �20�

In addition to the constitutive relations given in Eqs. (13) and (20), we also have the two-dimensional
equations of motion (Mindlin, 1972; Wang et al., 1999) and charge as

T
�n�
ij, i ÿ nT

�nÿ1�
2j � F

�n�
j � r

X1
m�0

Bmn

�
1� �m� n� 1�R� �u

�m�
j , n � 0, 1, 2, 3,

D
�k�
i, i ÿ �D

�k�
2 � 0, k � 2, 3, �21�

where r is the density of material and R is the mass ratio (Wang et al., 1999). It is clear that although
the face traction of the plate is still considered through F

�n�
j , the face charge terms which have to be
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approximated in both power and trigonometric series expansions have been totally eliminated, thus
providing a precise description of the electric potential and displacement on the faces. This feature is the
sole purpose of these equations.

2.3. Boundary conditions

The changes in the electric potential expansion will certainly make the boundary conditions di�erent,
particularly the ones related to the potential and charge. A proper summary of such changes will be
important in the consideration of the electrodes and their requirements. To obtain proper boundary
conditions, for the plate con®guration shown in Fig. 1, we start with�

S

�ÿ
tj ÿ niTij

�
duj � �sÿ niDi �df

�
dS � 0, �22�

where ni, tj, and s are outward normal, prescribed traction, and prescribed charge, respectively. The
variation of the two-dimensional displacements is

duj �
X1
n�0

xn
2du
�n�
j , �23�

and the potential is given in (6)1 already. However, since the displacements are expanded in power
series, we only need to work on the equations related to the charge equations on the boundary.

By using (6)1 in (22) with only the charge related equations, we have�
S

�sÿ niDi �
hÿ
x 2
2 ÿ b2

�
df�2� � x2

ÿ
x 2
2 ÿ b2

�
df�3�

i
dS � 0, �24�

or �
C

h�
s�2� ÿ niD

�2�
i

�
df�2� �

�
s�3� ÿ niD

�3�
i

�
df�3�

i
ds � 0, �25�

where

s�2� �
�b
ÿb

s
ÿ
x 2
2 ÿ b2

�
dx2, s�3� �

�b
ÿb

sx2

ÿ
x 2
2 ÿ b2

�
dx2: �26�

It is clear that the boundary conditions on the faces �x2 �2b� have been taken care of by the
diminishing of the potential. For the cylindrical faces (edges), we have

s�2� ÿ niD
�2�
i � 0, s�3� ÿ niD

�3�
i � 0, �27�

or alternatively

f�2� � �f
�2�
, f�3� � �f

�3�
, �28�

where �f
�k� �k � 2, 3� are prescribed potentials.

These equations are the complete set for the piezoelectric plate covered with electrodes. Displacement
and potential variables up to the third-order have been considered in this derivation. For many
applications, it is always necessary to eliminate some less dominant modes to preserve the strongly
coupled thickness-shear and ¯exural vibrations. Since we are more concerned in the ®nite element
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implementation of these equations, we leave further work on the simpli®cation and reduction to the
future. We also want to emphasize that the derivation of these equations is consistent with higher order
Mindlin plate theory, which has been implemented in our ®nite element analysis of crystal resonators
(Yong et al., 1996a; Wang et al., 1999) with success. We expect that the two groups of equations can be
combined so the analysis of plates with partial electrodes can be carried out smoothly.

2.4. Capacitance

For a crystal resonator driven by an alternating voltage, the electrical properties can be obtained
through the analysis of the forced vibrations. The mechanical displacement and electric potential
solutions from such analysis can be used for the calculation of the motional capacitance, which in turn
can be used for the evaluation of inductance and other quantities. In addition to measuring the overall
quality of the resonator, these properties can be used in the determination of the strength of resonance
and coupling of modes.

For the calculation of capacitance, we follow Lee and Lin (1998) with the charge equation�
V

Di, i dV � 0: �29�

For a small box bounded by x 001 < x1 < x 01, ÿb < x 002 < x2 < x 02 < b, considering D1, 1 � D3, 3 � 0 due to
the uniform distribution of electric potential on the faces, the above equation can be rewritten as�

A

�
D2

ÿ
x 02
�ÿD2

ÿ
x 002
��

dA � 0: �30�

This implies that on all the planes parallel to the faces, the charge should be the same. Based on this
observation, we have�

V

f�x2�D2 dV �
�b
ÿb

f�x2� dx2

�
A

D2 dA, �31�

or

�
A

D2 dA �

�
A

�b
ÿb

f�x2 �D2 dx2 dA�b
ÿb

f�x2� dx2

: �32�

The total surface charge on the face is

Q �
�
A

D2 dA, �33�

where A is the electroded area.
In this study, we have noticed that

D
�2�
2 �

�b
ÿb

ÿ
x 2
2 ÿ b2

�
D2 dx2, �34�

or the weighting function is f �x2� � x 2
2 ÿ b2: Through integration of (32), the charge is given as
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Q � 3

4b3

�
A

D
�2�
2 dA: �35�

With D
�2�
2 given in (19)1, we have

Q � 3

4b3

�
A

�
ÿ e2p

�
4b3

3
S �0�p �

4b5

15
S �2�p

�
ÿ 16b5

15
Ek2f

�2�
, k ÿ

8b5

15
E22f

�3� � 4b2

3
E22f1

�
dA

� E22A
b

f1 ÿ
�
A

�
e2p

�
S �0�p �

b2

5
S �2�p

�
� 4b2

5
Ek2f

�2�
, k �

2b2

5
E22f

�3�
�

dA: �36�

The static and motional capacitances and capacitance ratio for the electroded plate are

Cs � E22A
2b

, Cm � Q

2f1

, Cr � Cm

Cs

, �37�

where A is the area of the electroded plate.
The capacitance ratio from these equations is given as

Cr � 1ÿ b

f1E22A

�
A

�
e2p

�
S �0�p �

b2

5
S �2�p

�
� 4b2

5
Ek2f

�2�
, k �

2b2

5
E22f

�3�
�

dA: �38�

3. Finite element formulation

For the two-dimensional solutions of the vibration equations of an electroded plate that we present in
the previous section, we turn to the ®nite element method, as we did in the free mechanical and
piezoelectric vibrations of crystal plates (Wang et al., 1999). However, the electrodes were only
considered for its mass e�ect with the neglect of the equal potential face conditions. The implementation
of the equation we derived here will provide a more suitable approach, although the piezoelectric e�ect,
with or without the consideration of the electrodes, is probably too small to have a noticeable impact on
the frequency solutions, as we have concluded before (Wang et al., 1999).

The variational equations of motion and charge, which can be derived from Eq. (21) by following a
standard procedure (Wang et al., 1999), upon proper manipulation, can be written as�

A

(
T
�n�
ij dS �n�ij �

X1
m�0

Bmn

�
1� �m� n� 1�R�r �u

�m�
j du�n�j

)
dA �

�
C

niT
�n�
ij du�n�j ds�

�
A

F
�n�
j du�n�j dA,

�
A

�
D
�2�
k dE �2�k � �D

�2�
2 dE �2�2 �D

�3�
k dE �3�k � �D

�3�
2 dE �3�2

�
dA � ÿ

�
C

ni

�
D
�2�
i df�2� �D

�3�
i df�3�

�
ds,

�39�

where R is the mass ratio and ni �i � 1, 3� is the outward normal of the cylindrical surface.
For piezoelectric materials, the virtual electric enthalpy density is de®ned as (Mindlin, 1972)

dH � TijdSij ÿDidEi: �40�
With the two-dimensional variables, the variational equations in (39) can be translated into
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�
A

(
T
�n�
ij dS �n�ij ÿ

�
D
�2�
k dE �2�k � �D

�2�
2 dE �2�2 �D

�3�
k dE �3�k � �D

�3�
2 dE �3�2

�

�
X1
m�0

Bmn

�
1� �m� n� 1�R�r �u

�m�
j du�n�j

)
dA

�
�
A

F
�n�
j du�n�j dA�

�
C

ni

h
T
�n�
ij du�n�j �

�
D
�2�
i df�2� �D

�3�
i df�3�

�i
ds: �41�

It can be seen that the mechanical and electric variables are being neatly incorporated into one
equation. With some proper de®nitions and arrangements, we should be able to combine them into one
set of independent variables as generalized displacements and ®eld quantities, thus resulting in a
generalized approach which is di�erent with the traditional technique where the two equations are
solved separately through iteration (Wang et al., 1999). This is the base of our generalized ®nite element
formulation and implementation of the electroded piezoelectric plate theory.

As the starting point, we de®ne the generalized displacement vector, which includes both mechanical
displacements and electric potentials, for the third-order theory as

u �
n
u
�0�
1 , u

�0�
2 , u

�0�
3 , u

�1�
1 , u

�1�
2 , u

�1�
3 , u

�2�
1 , u

�2�
2 , u

�2�
3 , f�2�, u�3�1 , u

�3�
2 , u

�3�
3 , f�3�

o
14�1, �42�

and the corresponding generalized strain vector as

S �
�
S�0�, S

�1�, S
�2�, E�2�, S�3�, E�3�

	
30�1, �43�

with

S
�k� �

n
S
�k�
1 , S

�k�
2 , S

�k�
3 , S

�k�
4 , S

�k�
5 , S

�k�
6

o
6�1, k � 0, 1, 2, 3,

E�m� �
n
E
�m�
2 , E

�m�
1 , E

�m�
3

o
3�1, m � 2, 3: �44�

In comparison to the generalized formulation of the free piezoelectric vibrations (Wang et al., 1999), we
see that the zeroth- and ®rst-order electric potentials f�0� and f�1� are no longer present. This reminds us
that special care has to be taken if the plate is partially electroded, which is a problem of practical
importance.

As a result, the generalized strain and displacement vectors are related to each other by

S � @Su, �45�
where the matrix operator is de®ned as

@S �

26666666664

@u @ �1�u 0 0 0 0

0 @u @ �2�u 0 0 0

0 0 @u 0 @ �3�u 0
0 0 0 @f 0 0
0 0 0 0 @u 0
0 0 0 0 0 @f

37777777775
30�14

, �46�

with submatrices de®ned as
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@u �

266666666666666666664

@

@x1
0 0

0 0 0

0 0
@

@x3

0
@

@x3
0

@

@x3
0

@

@x1

0
@

@x1
0

377777777777777777775
6�3

, @ �n�1�u � �n� 1�

26666664
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0

37777775
6�3

, @f � ÿ

2666664
1

@

@x1

@

@x3

3777775
3�1

: �47�

Similarly, we de®ne the generalized stress vector

T �
�
T�0�, T�1�, T�2�, D�2�, T�3�, D�3�

	
30�1, �48�

where

T
�k� �

n
T
�k�
1 , T

�k�
2 , T

�k�
3 , T

�k�
4 , T

�k�
5 , T

�k�
6

o
6�1, k � 0, 1, 2, 3,

D�m� �
n

�D
�m�
2 , D

�m�
1 , D

�m�
3

o
3�1, m � 2, 3: �49�

Now the constitutive relations can be expressed in matrix form as

T � CS� e1f1, �50�
where

C �

266666666666664

B00c 0 B02c ÿe
�2�
0 0 0

0 B11c 0 ÿe
�2�
1 B13c ÿe

�3�
1

B20c 0 B22c ÿe
�2�
2 0 ÿe

�3�
2

e
�0�
2 e

�1�
2 e

�2�
2 E�2�2 Åe

�3�
2 E�3�2

0 B31c 0 ÿÅe
�2�
3 B33c ÿe

�3�
3

0 e
�1�
3 e

�2�
3 E�2�3 e

�3�
3 E�3�3

377777777777775
30�30

, e1 �

266666664

ÿe�0�

0
ÿe�2�

E�2�

0
0

377777775
30�1

: �51�

It should be noticed that Åe
�2�
3 and e

�2�
3 are di�erent quantities.

The material constant submatrices, as appears here and in the previous section, are

e
�2�
0 � ÿ

4b3

3
�0, e1, e3 �, e

�2�
1 �

4b3

3
�e2, 0, 0�,

e
�3�
1 � e

�2�
2 � ÿ

4b5

15
�0, e1, e3 �, Åe

�2�
3 �

4b5

5
�e2, 0, 0�,
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e
�3�
2 �

8b5

15
�e2, 0, 0�, e

�3�
3 � ÿ

4b7

35
�0, e1, e3 �

E�2�2 �
16b5

15

26664
5

2b2
E22 0 0

0 E11 E31
0 E13 E33

37775,

E�3�2 �
8b5

15

24 0 ÿE12 ÿE32
E21 0 0
E23 0 0

35,

E�3�3 �
16b7

105

26664
35

2b2
E22 0 0

0 E11 E31
0 E13 E33

37775, E�2� � 4b2

3
E2,

e�0� � ÿ2e2, e�2� � ÿ2b
2

3
e2,

ei � fei1, ei2, ei3, ei4, ei5, ei6g, i � 1, 2, 3,

E1 � fE22, 0, 0g, E2 � f0, E21, E23g, �52�

The variational equation (41) in matrix notations is�
A

dST ÅDS dA�
�
A

d ÅuTmÈÅu dA �
�
A

dST Åe1f1 dA�
�
A

d ÅuTF dA�
�
C

d ÅuTf ds, �53�

where

ÅD �

266666666666664

B00c 0 B02c ÿe
�2�
0 0 0

0 B11c 0 ÿe
�2�
1 B13c ÿe

�3�
1

B20c 0 B22c ÿe
�2�
2 0 ÿe

�3�
2

ÿe
�0�
2 ÿe

�1�
2 ÿe

�2�
2 ÿE�2�2 ÿÅe

�3�
2 ÿE�3�2

0 B31c 0 ÿÅe
�2�
3 B33c ÿe

�3�
3

0 ÿe
�1�
3 ÿe

�2�
3 ÿE�2�3 ÿe

�3�
3 ÿE�3�3

377777777777775
30�30

, Åe1 �

266666664

e�0�

0
e�2�

E�2�

0
0

377777775
30�1

, �54�
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m �

26666666664

m
�0�
0 0 m

�2�
0 0 0 0

0 m
�1�
1 0 0 m

�3�
1 0

m
�0�
2 0 m

�2�
2 0 0 0

0 0 0 0 0 0
0 m

�1�
3 0 0 m

�3�
3 0

0 0 0 0 0 0

37777777775
14�14

,

m�n�m � rBmn

�
1� �m� n� 1�R�I3�3:

The de®nitions for the boundary terms F and f in Eq. (53) can be found in Eq. (41). For the forced
vibration analysis, particular attention should be directed to the excitation force term appearing to the
right-hand side of Eq. (53).

Now we discretize the variational equation (53) with

u � NU, B � @SN, �55�
where N and U are interpolation function and discretized displacement matrices, respectively. The
discretized variational equation is�

A

BT ÅDB dA U�
�
A

NTmN dA ÈU �
�
A

BT Åe1 dA f1 �
�
A

NTF dA�
�
C

NTf ds, �56�

or

KU�M ÈU � FE � FA � FC, �57�
where

K �
�
A

BT ÅDB dA, M �
�
A

NTmN dA,

FE �
�
A

BT Åe1 dA f1, FA �
�
A

NTF dA, FC �
�
C

NTf ds, �58�

are the sti�ness matrix, mass matrix, excitation force vector, face force vector, and edge force
vector, respectively. Details of these matrices can be found in our previous paper (Wang et al.,
1999).

If the steady vibration is assumed, we have

KUÿ o2MU � FE � FA � FC, �59�
where the vibration frequency o is usually normalized by the fundamental thickness frequency

o0 � p
2b

�������
c66
r

r
: �60�

The free vibrations, or the eigenvalue problem, can be deduced from (59) by setting all the force vectors
to zero.

For the computation of the sti�ness matrix, we have
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B �

266666666666666666666666666666666666666666666666666666664

Ni, 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 Ni 0 0 0 0 0 0 0 0 0
0 0 Ni, 3 0 0 0 0 0 0 0 0 0 0 0
0 Ni, 3 0 0 0 Ni 0 0 0 0 0 0 0 0
Ni, 3 0 Ni, 1 0 0 0 0 0 0 0 0 0 0 0
0 Ni, 1 0 Ni 0 0 0 0 0 0 0 0 0 0
0 0 0 Ni, 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2Ni 0 0 0 0 0 0
0 0 0 0 0 Ni, 3 0 0 0 0 0 0 0 0
0 0 0 0 Ni, 3 0 0 0 2Ni 0 0 0 0 0
0 0 0 Ni, 3 0 Ni, 1 0 0 0 0 0 0 0 0
0 0 0 0 Ni, 1 0 2Ni 0 0 0 0 0 0 0
0 0 0 0 0 0 Ni, 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 3Ni 0 0
0 0 0 0 0 0 0 0 Ni, 3 0 0 0 0 0
0 0 0 0 0 0 0 Ni, 3 0 0 0 0 3Ni 0
0 0 0 0 0 0 Ni, 3 0 Ni, 1 0 0 0 0 0
0 0 0 0 0 0 0 Ni, 1 0 0 3Ni 0 0 0
0 0 0 0 0 0 0 0 0 ÿNi 0 0 0 0
0 0 0 0 0 0 0 0 0 ÿNi, 1 0 0 0 0
0 0 0 0 0 0 0 0 0 ÿNi, 3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 Ni, 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 Ni, 3 0
0 0 0 0 0 0 0 0 0 0 0 Ni, 3 0 0
0 0 0 0 0 0 0 0 0 0 Ni, 3 0 Ni, 1 0
0 0 0 0 0 0 0 0 0 0 0 Ni, 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 ÿNi

0 0 0 0 0 0 0 0 0 0 0 0 0 ÿNi, 1

0 0 0 0 0 0 0 0 0 0 0 0 0 ÿNi, 3

377777777777777777777777777777777777777777777777777777775
30�14

:

�61�
Finally, with the displacement solutions from Eq. (59), we can also formulate the capacitance ratio into
matrix format as

Cr � 1ÿ b

f1E22A

�
A

e2BU dA, �62�

where

e2 �
�

eT
2 , 0,

b2

5
eT
2 , ÿ

4b2

5
ET
2 , 0, ÿ 2b2

5
ET
1

�
1�30

: �63�

4. Numerical examples

With the successful derivation of the new equations and the systematic implementation in the ®nite
element analysis, it is necessary, as it has always been, to verify the computational results with existing
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experimental data. The validated equations then can be combined with other techniques for the
modeling of real crystal resonators, which usually have partial electrodes and support structures in
addition to the crystal plates. The computing issues concerning this implementation, such as the
eigenvalue extraction, convergence, high vibration frequency, and ®ner mesh requirement, are the same
as the piezoelectric plates we have considered before (Wang et al., 1999). What is unique here is that the
forced vibrations also require a linear solver for the large and sparse linear equation, which is associated
with the eigenvalue problem. Generally speaking, the number of elements and resulting equations with
the third-order plate theory are very large and proportional to the aspect ratios because of the high
vibration frequency. However, the focus of this study is to demonstrate the e�ectiveness of the new
theory in the prediction of the resonance frequencies and the capacitance ratio. Computational results,
fortunately, can be compared to the existing experimental data to validate the theory through following
examples.

4.1. Frequency spectrum

The ®rst example we present here is the comparison of the frequency spectrum of a crystal plate
which was studied experimentally by Koga (1963) before. In our computation, the four-node element,
which also has two incompatible nodes, is used with the truncation of the third-order theory (Wang et
al., 1999), although the program we have can handle other elements, such as the nine- and sixteen-node
types. In the frequency spectrum, or the frequency versus the length to thickness ratio a/b, shown in
Fig. 2, it is found that, with a slight shift, the frequency spectra agree well. It is also easy to see that the
spectrum based on the current theory is actually very close to the previous ones with pure mechanical or
piezoelectric vibrations (Wang et al., 1999). The piezoelectric e�ect, as we found earlier, is indeed very
small. However, the comparison concludes that the current theory will generally predict the resonance

Fig. 2. Normalized frequency O vs. length to thickness ration a/b of crystal plates with c/b = 16.3660 and R = 0.008 in compari-

son with experimental data (w) from Koga (1963).
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frequencies with considerable accuracy. This is also a reminder for us to study more complicated
con®gurations with pure mechanical vibrations due to its dominance.

4.2. Capacitance ratios

The ultimate goal of the new theory, as we stated in the beginning, is to study the forced vibrations of
crystal resonators. The ®nite element formulation and implementation of the equations for this purpose
have made it possible for us to obtain the displacement and potential solutions excited by the driving
voltage on the electrodes. In turn, the solutions can be used for the calculations we formulated earlier.
To demonstrate the e�ectiveness of the current theory, we computed the capacitance ratios of three
crystal plate samples of di�erent aspect ratios and compared them with the experimental data obtained
by Sekimoto et al. (1992) in Figs. 3±5. Again, small shifts have been made to match the major vibration
modes, fundamental thickness-shear in particular, more accurately. From the three samples, we ®nd that
generally the computational results agree well with the measured ones. The noticeable discrepancies,
particular in the regions away from the fundamental thickness-shear frequency (close to 1.0), could be
the results of the inaccurate electrode information and fundamental de®ciency in higher frequency.
Currently we are working on means to make the resonance frequency more accurate in a broad range
and for various electrodes. The e�ect of the electrodes could be signi®cant if the mass ratio is higher,
because the coupling of the modes and consequently the frequency spectrum will be changed.

5. Conclusions

In summary, we believe that the current theory is suitable for the study of the electroded piezoelectric
plates as it is based on a rigorous derivation of the equations from basic principles. Although we

Fig. 3. Capacitance ratio of an electroded crystal plate with a/b = 8.0391, c/b = 4.0229, and R= 0.003. The dotted lines are

measurements by Sekimoto et al. (1992).
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Fig. 4. Capacitance rati of an electroded crystal plate with a/b = 8.0391, c/b = 5.7571, and R = 0.003. The dotted lines are

measurements by Sekimoto et al. (1992).

Fig. 5. Capacitance ratio of an electroded crystal plate with a/b = 8.0391, c/b = 8.0599, and R = 0.003. The dotted lines are

measurements by Sekimoto et al. (1992).
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concentrate on the third-order theory for the ®nite element application, it can be tailored and truncated,
as most analytical solution techniques require, for the one-dimensional approximate solutions. This
theory is particularly advantageous if the partially electroded plates are to be studied because the
identical de®nitions of the higher order potentials and displacements can be chosen to satisfy the
complicated boundary conditions in di�erent regions in a natural manner. Thus it is clear that the
theory is compatible to the Mindlin plate theory in cases where there are no electrodes. The same
application can be found in the ®nite element implementation, which is the only method for precise two-
dimensional solutions for plates with complicated geometry. These solutions, as we have shown here,
can be used for the calculation of the electrical properties of resonators. The theory can also be applied
to similar problems if the electrodes of the plate need to be considered precisely.

The sole purpose of the new theory is to simplify the electrical boundary conditions if there are
electrodes on the piezoelectric plate. Because only the electrical potential expansion is modi®ed, the
e�ect on the mechanical equations should be very small. In other words, the Mindlin plate theory is well
preserved while the electrical boundary conditions are easily handled. As demonstrated in the ®nite
element implementation, these equations can be conveniently combined with the Mindlin plate theory
for the analysis of partially electroded piezoelectric plates.

Finally, we want to point out that though it is important, at this stage the mechanical e�ects of the
electrodes are not considered if the small discrepancies on the capacitance ratios are noted. A more
satisfactory approach will include both the mass and sti�ness e�ects of thicker electrodes.
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